Fractional diffusion: recovering the distributed fractional derivative from overposed data
نویسندگان
چکیده
منابع مشابه
Fractional Derivative as Fractional Power of Derivative
Definitions of fractional derivatives as fractional powers of derivative operators are suggested. The Taylor series and Fourier series are used to define fractional power of self-adjoint derivative operator. The Fourier integrals and Weyl quantization procedure are applied to derive the definition of fractional derivative operator. Fractional generalization of concept of stability is considered.
متن کاملA numerical method for solving a class of distributed order time-fractional diffusion partial differential equations according to Caputo-Prabhakar fractional derivative
In this paper, a time-fractional diffusion equation of distributed order including the Caputo-Prabhakar fractional derivative is studied. We use a numerical method based on the linear B-spline interpolation and finite difference method to study the solutions of these types of fractional equations. Finally, some numerical examples are presented for the performance and accuracy of the proposed nu...
متن کاملThe Fractional Orthogonal Derivative
This paper builds on the notion of the so-called orthogonal derivative, where an n-th order derivative is approximated by an integral involving an orthogonal polynomial of degree n. This notion was reviewed in great detail in a paper by the author and Koornwinder in 2012. Here, an approximation of the Weyl or Riemann–Liouville fractional derivative is considered by replacing the n-th derivative...
متن کاملFast Evaluation of the Caputo Fractional Derivative and Its Applications to Fractional Diffusion Equations
Abstract. We present an efficient algorithm for the evaluation of the Caputo fractional derivative C0D α t f(t) of order α ∈ (0, 1), which can be expressed as a convolution of f (t) with the kernel t. The algorithm is based on an efficient sum-of-exponentials approximation for the kernel t on the interval [∆t, T ] with a uniform absolute error ε, where the number of exponentials Nexp needed is ...
متن کاملAnalysis of the fractional diffusion equations with fractional derivative of non-singular kernel
*Correspondence: [email protected] 1Department of Mathematical Sciences, UAE University, P.O. Box 15551, Al Ain, UAE Full list of author information is available at the end of the article Abstract In this paper we study linear and nonlinear fractional diffusion equations with the Caputo fractional derivative of non-singular kernel that has been launched recently (Caputo and Fabrizio in Prog....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems
سال: 2017
ISSN: 0266-5611,1361-6420
DOI: 10.1088/1361-6420/aa573e